

Natural Language Processing

Yue Zhang Westlake University

Chapter 11

Transition-based Methods for Structured Prediction

Contents

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

Contents

VestlakeNLP

• 11.1 Transition-based Structured Prediction

- 11.1.1 Greedy Local Modelling
- 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

- A different view from graph-based models for structured prediction
 - Encodes rich unbounded features without complexity constraints
 - A general framework that is easy to adapt to different tasks
- Maps output building process into a state transducer
 - State S_i
 - Corresponds to partial results during decoding
 - Action *a_i*
 - The operations that can be applied for state transition
 - Construct output incrementally

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

- Automata:
 - State S_i
 - Action a_i

Transition-based structured prediction **V**estlakeNLP

Transition-based structured prediction is a state transition process.

Automata:

- State
 - Start state an empty structure
 - End state —— the output structure
 - Intermediate state partially constructed structures
- Transition actions
 - Incremental steps that build output structures, change one state to another

WestlakeNLP

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be)
例(example)"

Next Action: SEP

 σ : partial output w: current partial word β : list of next incoming characters

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be)
例(example)"

Next Action: SEP

 σ : partial output w: current partial word β : list of next incoming characters

• Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be) 例(example)"

Next Action: APP

 σ : partial output w: current partial word β : list of next incoming characters

WestlakeNLP

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be)
例(example)"

Next Action: SEP

 σ : partial output w: current partial word β : list of next incoming characters

• Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be) 例(example)"

Next Action: APP

 σ : partial output w: current partial word β : list of next incoming characters

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be)
例(example)"

Next Action: SEP

 σ : partial output w: current partial word β : list of next incoming characters

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be) 例(example)"

Next Action: SEP

 σ : partial output w: current partial word β : list of next incoming characters

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be) 例(example)"

Next Action: FIN

 σ : partial output w: current partial word β : list of next incoming characters

Input: "以(take) 前(before) 天(day) 下(fall) 雨(rain) 为(be) 例(example)"

 σ : partial output w: current partial word β : list of next incoming characters

• NEXT ACTION: *Shift*

VestlakeNLP

• NEXT ACTION: Left - Arc

WestlakeNLP

• NEXT ACTION: *Shift*

VestlakeNLP

• NEXT ACTION: *Right – Arc*

VestlakeNLP

• NEXT ACTION: *Reduce*

WestlakeNLP

• NEXT ACTION: *Right – Arc*

VestlakeNLP

• NEXT ACTION: Reduce

WestlakeNLP

• NEXT ACTION: Finish

Contents

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

Transition-based Modeling

Given a state s_{i-1}, our goal is to disambiguate all possible
actions a_i ∈POSSIBLEACTIONS(s_{i-1}) by using a discriminative
model to score transition actions:

$$score(a_i|s_{i-1}) = \vec{\theta} \cdot \vec{\phi}(s_{i-1}, a_i)$$

- $\vec{\theta}$: model parameter vector
- $\vec{\phi}(s_{i-1}, a_i)$: feature vector on the input-output pair (s_{i-1}, a_i)

Greedy Local Method

VestlakeNLP

- Training
 - Training dataset $D = \{(X_i, Y_i)\}|_{i=1}^N$

break down

• A sequence of gold transitions: $(s_{j-1}^{(i)}, a_j^{(i)})$

merge all the state-action pairs

- A training set for the discriminative model
- Testing
 - Start from initial state $s_0(X)$
 - Repeatedly find $\hat{a}_i = argmax_{\alpha}\vec{\theta} \cdot \vec{\phi}(s_{i-1}, \alpha)$

Greedy Local Method

• NEXT ACTION: *Shift*

• NEXT ACTION: Left - Arc

• NEXT ACTION: *Shift*

• NEXT ACTION: *Right – Arc*

• NEXT ACTION: *Reduce*

• NEXT ACTION: *Right – Arc*

• NEXT ACTION: Reduce

• NEXT ACTION: Finish

• An Example

____ He does it here

44

• An Example

$He does it here \longrightarrow He does it here$

Problem of Greedy Local Modeling

WestlakeNLP

- In a globally optimal action sequence, each action may not necessarily be the optimal choice locally.
- Result in error propagation.
- Model does not see incorrect states during training.

Contents

VestlakeNLP

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

Problem of Greedy Local Modeling

WestlakeNLP

- In a **globally** optimal action sequence, each action may not necessarily be the optimal choice **locally**.
- Result in error propagation.

Solution:

- Beam search use a globally trained model:
 - Given an input *X*, a global transition-based model calculates score(A|X) directly, where $A_{1:|A|} = a_1a_2 \dots a_{|A|}$ is a sequence

of transition actions a_i for building an output structure for *X*.

Solution

VestlakeNLP

• Use global linear model to calculate *score*(*A*|*X*)

 $score(A|X) = \vec{\theta} \cdot \vec{\phi}(A, X)$ $\stackrel{\bullet}{\checkmark} decompose \vec{\phi}(A|X) \text{ for incremental decoding}$ $\stackrel{\bullet}{\Rightarrow} \vec{\phi}(A|X) = \sum_{i=1}^{|A|} \vec{\phi}(a_i, s_{i-1})$ $\stackrel{\bullet}{\Rightarrow} score(A|X) = \vec{\theta} \cdot \vec{\phi}(A, X) = \vec{\theta} \cdot \left(\sum_{i=1}^{|A|} \vec{\phi}(a_i, s_{i-1})\right)$ $= \sum_{i=1}^{|A|} \left(\vec{\theta}\right) \cdot \left\{\vec{\phi}(a_i, s_{i-1})\right\}$

Beam search decoding algorithm

VestlakeNLP

```
Inputs: \vec{\theta} —discriminative linear model parameters;
X - \text{task input};
K — beam size;
Initialization: agenda \leftarrow [(STARTSTATE(X), 0)];
Algorithm:
while not ALLTERMINAL(agenda) do
    to\_expand \leftarrow agenda;
   agenda \leftarrow [];
   for (state, score) \in to\_expand do
        for a \in \text{POSSIBLEACTIONS}(state) do
            new\_state \leftarrow EXPAND(state, a);
           new\_score \leftarrow score + \vec{\theta} \cdot \vec{\phi}(state, a);
            APPEND(agenda, (new_state, new_score));
    agenda \leftarrow \text{TOP-K}(agenda, K);
Output: TOP-K(agenda, 1)[0];
```


• Dependency parsing

AL–LEFT-ARC AR–RIGHT-ARC

VestlakeNLP

Beam search decoding example

Gold Sequence of Action:

Beam search training algorithm

```
Inputs: D — gold standard training set;
K — beam size;
T — number of training iterations;
Initialisation: \vec{\theta} \leftarrow 0;
Algorithm:
for t \in [1, ..., T] do
    for (X, Y) \in D do
         G \leftarrow \text{GOLDACTIONSEQ}(X, Y);
         agenda \leftarrow [(STARTSTATE(X), 0)];
         gold\_state \leftarrow \text{STARTSTATE}(X);
         i \leftarrow 0;
         while not ALLTERMINAL(agenda) do
             i \leftarrow i + 1;
             to expand \leftarrow agenda ;
             agenda \leftarrow [];
             for (state, score) \in to expand do
                  for a \in \text{POSSIBLEACTIONS}(state) do
                      new\_state \leftarrow EXPAND(state, a);
                      new score \leftarrow score + \vec{\theta} \cdot \vec{\phi}(state, a);
                      APPEND(agenda, (new_state, new_score));
             agenda \leftarrow \text{TOP-K}(agenda, K);
             gold\_state \leftarrow EXPAND(gold\_state, G[i]);
             if not CONTAIN(agenda, gold_state) then
                  pos \leftarrow gold\_state;
                  neg \leftarrow \text{TOP-K}(agenda, 1)[0];
                  \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(pos) - \vec{\phi}(neg);
                 continue((W, G) \in D)
         if gold\_state \neq TOP-K(agenda, 1)[0] then
             \vec{\theta} \leftarrow \vec{\theta} + \vec{\phi}(gold\_state) - \vec{\phi}(\text{TOP-K}(agenda, 1)[0]);
Output: \theta;
```

Contents

WestlakeNLP

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling

• 11.2 Transition-based Constituent Parsing

- 11.2.1 Shift-reduce Constituent Parsing
- 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

- Three steps in transition-based modeling
 - Find the state transition process
 - Define global feature vector
 - Apply the standard learning and search framework

• State

 σ : stack of partially constituent outputs.

 β : buffer of the next incoming words.

actions

SHIFT, REDUCE-L/R-X, UNARY-X, IDLE

Shift-reduce constituent parsing

Axiom: Goal:	$([], W_{1:n}) \\ (\sigma, [])$	SHIFT:	$\frac{(\sigma, w_0 \beta)}{(\sigma w_0, \beta)}$
REDUCE-L-X:	$(\sigma s_1 s_0, \beta)$		$(\sigma s_1 s_0, \ \beta)$
	Х	REDUCE-R-X:	Х
	$(\sigma \checkmark \land \beta)$		$(\sigma \land , \beta)$
	s_1 s_0		s_1 s_0
UNARY-X:	$(\sigma s_0,\ eta)$		$(\sigma, [])$
	Х	Idle:	
	$(\sigma \downarrow, eta)$		$(\sigma, [])$
	s_0		

78

Transition-based constituent parsing Use VestlakeNLP

Shift-reduce constituent parsing

- Example ٠
 - Shift

bu	ffer
υu	1101

DT	ADJ	NN	VV	ADJ	NNS	
The	little	boy	likes	red t	omatoes	

Shift-reduce constituent parsing

- Example
 - Shift

Shift-reduce constituent parsing

- Example
 - Shift

Shift-reduce constituent parsing

- Example
 - Reduce-R-NP

WestlakeNLP

Shift-reduce constituent parsing

- Example
 - Reduce-R-NP

Shift-reduce constituent parsing

- Example
 - Shift

WestlakeNLP

Shift-reduce constituent parsing

- Example ٠
 - Shift

buffer

Shift-reduce constituent parsing

- Example ٠
 - Shift

buffer

WestlakeNLP

Shift-reduce constituent parsing

- Example
 - Reduce-R-NP

Shift-reduce constituent parsing

- Example
 - Reduce-L-VP

Shift-reduce constituent parsing

- Example
 - Shift

buffer

WestlakeNLP

Shift-reduce constituent parsing

- Example
 - Reduce-L-S

buffer

Shift-reduce constituent parsing

- Example
 - Reduce-R-S

91

WestlakeNLP

Shift-reduce constituent parsing

- Example
 - Terminate stack

buffer

92

- Feature Templates for Shift-reduce Constituent Parser
- Example state

- **WestlakeNLP**
- Feature Templates for Shift-reduce Constituent Parser

Feature type	Feature Template
unigrams	$s_0ps_0c, s_0ws_0c, s_1ps_1c, s_1ws_1c, s_2ps_2c, s_2ws_2c, s_3ps_3c,$
	s_3ws_3c , b_0wb_0p , b_1wb_1p , b_2wb_2p , b_3wb_3p , $s_{0.l}ws_{0.l}c$,
	$s_{0.r}ws_{0.r}c, s_{0.u}ws_{0.u}c, s_{1.l}ws_{1.l}c, s_{1.r}ws_{1.r}c, s_{1.u}ws_{1.u}c$
bigrams	$s_0ws_1w, s_0ws_1c, s_0cs_1w, s_0cs_1c, s_0wb_0w, s_0wb_0p, s_0cb_0w,$
	$s_0cb_0p, b_0wb_1w, b_0wb_1p, b_0pb_1w, b_0pb_1p, s_1wb_0w, s_1wb_0p,$
	$s_1 c b_0 w, s_1 c b_0 p$
trigrams	$s_0cs_1cs_2c, \ s_0ws_1cs_2c, \ s_0cs_1wb_0p, \ s_0cs_1cs_2w, \ s_0cs_1cb_0p,$
	$s_0ws_1cb_0p, s_0cs_1wb_0p, s_0cs_1cb_0w$

s_i: top node of the stack; *b_i*: front word on the buffer; *xw*: the word form of *x*; *xp*: the POS tag; *xc*: the constituent label of a non-terminal node *x*; *xl*, *xr*, *xu*: the left child, the right child and the unary child of *x*, respectively.

- Feature Templates for Shift-reduce Constituent Parser
- Example

In the 10-th step of the example sentence "*The little boy likes red tomatoes*", the $s_0 ps_0 c$ feature is VBZ | VP and the $s_1 ps_1 c$ feature is NN | NP.

Contents

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

WestlakeNLP

97

• Projective dependency tree

• Non-projective dependency tree

Contents

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

- Arc-standard Parsing
 - State

 σ : stack of partially dependency outputs.

 β : buffer of the next incoming words.

• actions

SHIFT, LEFT-ARC-X, RIGHT-ARC-X

VestlakeNLP

Actions

100

Arc-standard Dependency Parsing

State: (σ, β, A) ; σ : stack; β : buffer; A: the set of dependency arcs that have been constructed

Example

Sentence "He gave her a tomato"

Next action: SHIFT

He gave her a tomato

Example

Sentence "He gave her a tomato"

Next action: SHIFT

He

gave her a tomato

Example

Sentence "He gave her a tomato"

Next action: LEFT-ARC-SUBJ

He gave

her a tomato

Example

Sentence "He gave her a tomato"

Next action: SHIFT

105

Example

Sentence "He gave her a tomato"

Next action: RIGHT-ARC-IOBJ

Example

Sentence "He gave her a tomato"

Next action: SHIFT

107

Example

Sentence "He gave her a tomato"

Next action: SHIFT

Example

Sentence "He gave her a tomato" Next action: LEFT-ARC-DET

109

Example

Sentence "He gave her a tomato" Next action: RIGHT-ARC-DOBJ

Example

Sentence "He gave her a tomato"

Next action: END

Arc-standard Dependency Parsing

• Example state

112

WestlakeNLP

113

Feature Templates for arc-standard dependency parsing

Feature Type	Feature Template	Feature Type	Feature Template
from single words	$s_0wp; s_0w; s_0p; b_0wp;$	valency	$s_0wv_r; s_0pv_r; s_0wv_l;$
	$b_0w; b_0p; b_1wp; b_1w;$		$s_0 p v_l; b_0 w v_l; b_0 p v_l;$
	$b_1p; b_2wp; b_2w; b_2p;$		
from word pairs	$s_0wpb_0wp; s_0wpb_0w;$	unigrams	$s_{0.h}w; s_{0.h}p; s_{0.l};$
	$s_0wpb_0p; s_0wb_0wp;$		$s_{0.l}w; s_{0.l}p; s_{0.l}l;$
	$s_0pb_0wp; s_0wb_0w;$		$s_{0.r}w; s_{0.r}p; s_{0.r}l;$
	$s_0 p b_0 p; b_0 p b_1 p;$		$b_{0.l}w; b_{0.l}p; b_{0.l}l;$
from three words	$b_0pb_1pb_2p; \ s_0pb_0pb_1p;$	third-order	$s_{0.h_2}w; s_{0.h_2}p; s_{0.h}l;$
	$s_{0.h}ps_0pb_0p;$		$s_{0,l_2}p; s_{0,l_2}l; s_{0,r_2}w;$
	$s_0ps_{0.l}pb_0p;$		$s_{0.r_2}p; s_{0.r_2}l; b_{0.l_2}w;$
	$s_0 p s_{0.r} p b_0 p;$		$b_{0.l_2}p; b_{0.l_2}l;$
	$s_0pb_0pb_{0.l}p;$		$s_0 p s_{0.l} p s_{0.l_2} p;$
			$s_0 p s_{0.r} p s_{0.r_2} p;$
			$s_0 p s_{0.h} p s_{0.h_2} p;$
			$b_0 p b_{0.l} p b_{0.l_2} p;$
distance	$s_0wd; s_0pd; b_0wd;$	label set	$s_0ws_r; s_0ps_r; s_0ws_l;$
	$b_0pd; s_0wb_0wd;$		$s_0 p s_l; n_0 w s_l; n_0 p s_l$
	$s_0 p b_0 p d;$		

Contents

WestlakeNLP

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

- Arc-eager Parsing
 - State

 σ : stack of partially constituent outputs.

 β : buffer of the next incoming words.

• actions

SHIFT, LEFT-ARC-X, RIGHT-ARC-X, REDUCE

VestlakeNLP

Arc-eager dependency parsing

• Example

WestlakeNLP

117

Arc-eager dependency parsing

Main differences comparing with arc-standard:

- Left Arc X/Right Arc X: construct a dependency arc from the front word on the buffer to the top word on the stack, but not as that (from the top two words on the stack) in arc-standard.
- *Reduce*: pop the top word off the stack.

WestlakeNLP

• NEXT ACTION: *Shift*

VestlakeNLP

• NEXT ACTION: Left - Arc - SUBJ

WestlakeNLP

• NEXT ACTION: *Shift*

VestlakeNLP

• NEXT ACTION: *Right – Arc – OBJ*

VestlakeNLP

• NEXT ACTION: *Reduce*

VestlakeNLP

• NEXT ACTION: *Right – Arc – MOD*

VestlakeNLP

• NEXT ACTION: Reduce

WestlakeNLP

• NEXT ACTION: Finish

Contents

WestlakeNLP

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

- The Swap Action and Non-projective Trees
- To allow constructing non-projective trees, the arc-standard system can be extended by adding a new action:
 - *Swap*: remove the second top word from the stack, pushing

it onto the buffer front.

Arc-standard Dependency Parsing with Swap Action

State: (σ, β, A) ; σ : stack; β : buffer; A: the set of dependency arcs that have been constructed; *IDX*(*w*): return the index of *w* in the sentence $W_{1:n}$.

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

A hearing was scheduled on this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

hearing was scheduled on this today

А

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: LEFT-ARC-DET

A hearing

was scheduled on this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

was scheduled on this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

scheduled on this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

on this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SWAP

this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SWAP

scheduled this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

was scheduled this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

scheduled this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

this today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SWAP

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SWAP

scheduled today

- Arc-standard Dependency Parsing with Swap Action
- Example

Next action: RIGHT-ARC-POBJ

WestlakeNLP

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: RIGHT-ARC-NMOD

was scheduled today
WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

was scheduled today

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: LEFT-ARC-SUBJ

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: SHIFT

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: RIGHT-ARC-TMP

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

• Example

Next action: LEFT-ARC-VG

WestlakeNLP

Arc-standard Dependency Parsing with Swap Action

Next action: END

Contents

WestlakeNLP

- 11.1 Transition-based Structured Prediction
 - 11.1.1 Greedy Local Modelling
 - 11.1.2 Structured Modelling
- 11.2 Transition-based Constituent Parsing
 - 11.2.1 Shift-reduce Constituent Parsing
 - 11.2.2 Feature Templates
- 11.3 Shift-reduce Dependency Parsing
 - 11.3.1 Arc-standard Dependency Parsing
 - 11.3.2 Arc-eager Projective Parsing
 - 11.3.3 The Swap Action and Non-projective Trees
- 11.4 Joint Models
 - 11.4.1 Joint POS-tagging and Dependency Parsing
 - 11.4.2 Joint Word Segmentation, POS-tagging and Dependency Parsing

WestlakeNLP

- Motivations
 - Cross-task information sharing
 - Reduction of error propagation
- Example
 - For joint POS-tagging and syntactic parsing, the *SHIFT* action of arc-standard algorithm can be replaced with *SHIFT X* action, where *X* refers to the POS label.

VestlakeNLP

Joint POS-tagging and Dependency Parsing

- Input: $W_{1:n} = w_1, ..., w_n$
- Output: $(T_{1:n}, A)$, where t_i is POS for w_i .
- The arc-standard algorithm can be extended by replacing *SHIFT* action with *SHIFT X* action
 - SHIFT X, which removes the front word from the buffer, assigning the POS label X to the word, and pushing it onto the stack.

Joint POS-tagging and Dependency Parsing

• Example

Next action: SHIFT—PRP

Stack [S]

Buffer [B]

 $He_1 won_2 the_3 game_4$

Joint POS-tagging and Dependency Parsing

• Example

Next action: SHIFT—VBD

Joint POS-tagging and Dependency Parsing

• Example

Next action: LEFT—ARC—NSUBJ

Stack [S]

Buffer [B]

 $He_{1/PRP}$ won₂

 the_3 game₄

VestlakeNLP

Joint POS-tagging and Dependency Parsing

• Example

Next action: SHIFT——DT

Joint POS-tagging and Dependency Parsing

• Example

Next action: SHIFT——NN

Joint POS-tagging and Dependency Parsing

• Example

Next action: LEFT—ARC—DET

VestlakeNLP

Joint POS-tagging and Dependency Parsing

• Example

Next action: RIGHT—ARC—DOBJ

VestlakeNLP

Joint POS-tagging and Dependency Parsing

• Example

Next action: END

Joint Word Segmentation, POS-tagging and Dependency Parsing

- Input: $C_{1:n} = C_1 \dots C_n$
- Output: $(W_{1:m}, T_{1:m}, A)$ where $w_1 \dots w_m$ are words, $t_1 \dots t_n$ are POS, and A is the set of dependency arcs.
- State:
 - σ -- partially built outputs
 - δ -- words
 - β -- incoming characters
 - A_c -- character dependencies
 - A_w -- word dependencies

VestlakeNLP

Joint Word Segmentation, POS-tagging and Dependency Parsing

	Axiom:		$([], [], C_{1:n}, \phi, \phi)$	ϕ)
	Goal:	($[S_0], [], [], A_c, A$	(1_w)
	LEET-ABC-C'	$(\sigma, \ \delta d_0, \ b_0 \beta, \ A_a)$	(A_w) such that \neg	$(\exists d \in \delta, d^{\frown} d_0 \in A_c)$
	LEF I-AIO-O.	$(\sigma, \delta,$	$b_0 \beta, A_c \cup \{d_0 \frown b$	$_{0}\}, A_{w})$
	Left-arc-X:	$(\sigma s_0, [d_0], \beta, A_c)$	(A_w) such that \neg	$(\exists s \in \sigma, s \stackrel{l}{\frown} s_0 \in A_w)$
		$(\sigma, \lfloor d$	$[0], \ \beta, \ A_c, \ A_w \cup \{s\}$	$(a_0^{\psi} d_0))$
	Shift: -	/	$(\sigma, [d_0], \beta, A_c, A$	
			$\frac{\sigma d_0, [], \beta, A_c, A}{\sigma d_0, [], \beta, A_c, A}$	\mathbf{I}_w)
	SHIFT-C:		$\frac{(\sigma, \ \delta, \ b_0 \beta, \ A_c, \ A}{(\sigma, \ \delta, \ b_0 \beta, \ A_c, \ A_c)}$	w)
			$(\sigma, \delta b_0, \beta, A_c, A$	$\frac{w}{d}$
	RIGHT-ARC-C: -		$\sigma, \ \delta d_0, \ b_0 \beta, \ A_c, \ A$	A_w
		$(\sigma, \delta d_0)$	$b_0 b_0, \ \beta, \ A_c \cup \{d_0'\}$	$\{b_0\}, A_w$
	RIGHT-ARC-X:	$(\sigma s_0, [$	$[d_0], \beta, A_c, A_w \cup \cdot$	$\frac{\{s_0 \land \forall d_0\}}{\langle A \rangle}$
		$(\sigma$	$\frac{ s_0 d_0, [], \beta, A_c,}{ \beta \beta \beta \beta \beta \beta }$	$\frac{A_w}{2}$
	Pop-X:		$(\sigma, [d_0], \beta, A_c, A$	(w)
		$(\sigma, [SUB])$	$\frac{\operatorname{FREE}(a_0, A_c)/X}{4}$	$\frac{5}{1-5}, \frac{A_c}{A_c}, \frac{A_w}{A_w}$
	REDUCE-C:	$(\sigma, \ \delta d_0, \ \beta, \ A_c$	$\frac{A_w}{(\Sigma_{w})}$ such that $\exists a$	$\underbrace{d \in \delta, \ d' \ \ }_{O} d \in A_c}_{O}$
			$(\sigma, 0, \beta, A_c, A_w$)
	REDUCE:	$(\sigma s_0, \ \delta, \ \beta, \ A_c$	$(\sigma, \delta, \beta, A_c, A_w)$ such that $\exists (\sigma, \delta, \beta, A_c, A_w)$	$\frac{s \in \sigma, s' * s_0 \in A_w}{)}$
State: (σ,	δ, β, A_c, A_w) σ : stack;	β:buffer;	δ : partial-word buffer;

 A_c : the set of character dependencies;

 A_w : the set of word dependencies ¹⁶⁴

Joint Word Segmentation, POS-tagging and Dependency Parsing

• Example

Step	σ	δ	β	A_c	A_w	Action
0			我,来,到,会,客,室			SHIFT-C

我, 来, 到, 会, 客, 室

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	eta	A_c	A_w	Action
1		我	来,到,会,客,室			POP-PN

我	来, 到, 会, 客, 室

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
2		我/PN	来,到,会,客,室			SHIFT-W

我/PN	来, 到, 会, 客, 室

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
3	我/PN		来,到,会,客,室			SHIFT-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
4	我/PN	来	到, 会, 客, 室			LEFTARC-C

我/PN	来	到, 会, 客, 室

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
5	我/PN		到, 会, 客, 室	来← 到		SHIFT

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	eta	A_c	A_w	Action
6	我/PN	到	到, 会, 客, 室	来← 到		POP-VV

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
7	我/PN	来到/VV	会, 客, 室	来← 到		LEFTARC- $SUBJ$

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
8		来到/VV	会, 客, 室	来← 到	我/PN← <i>SUBJ</i> 来到/VV	SHIFT

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
9	来到/VV		会, 客, 室	来← 到	我/PN← <i>SUBJ</i> 来到/VV	SHIFT-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
10	来到/VV	会	客,室	来← 到	我/PN← <i>SUBJ</i> 来到/VV	RIGHTARC-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
11	来到/VV	会,客	室	来← 到, 会→客	我/PN← <i>subj</i> 来到/VV	REDUCE-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
12	来到/VV	会	室	来← 到, 会→客	我/PN← SUBJ 来到/VV	LEFTARC-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
13	来到/VV		室	来← 到, 会→客, 会←室	我/PN← <i>SUBJ</i> 来到/VV	SHIFT-C

Joint Word Segmentation, POS-tagging and Dependency Parsing

• Example

Step	σ	δ	β	A_c	A_w	Action
14	来到/VV	室		来← 到, 会→客, 会←室	我/PN← SUBJ 来到/VV	POP-NN

179

Joint Word Segmentation, POS-tagging and Dependency Parsing

Step	σ	δ	β	A_c	A_w	Action
15	来 到/VV	会客 室/NN		来← 到, 会→客, 会 ←室	我/PN <i>← SUBJ</i> 来 到/VV	RIGHTARC-DOBJ

Joint Models

Joint Word Segmentation, POS-tagging and Dependency Parsing

• Example

Step	σ	δ	β	A_c	A_w	Action
16	来到/VV,会客 室/NN			来← 到, 会→ 客, 会←室	我/PN← <i>SUBJ</i> 来到/VV,来到/VV <i>DOBJ</i> →会客室/NN	REDUCE

Joint Models

Joint Word Segmentation, POS-tagging and Dependency Parsing

• Example

Step	σ	δ	β	A_c	A_w	Action
17	来 到/VV			来← 到, 会→客, 会 ←室	我/PN← <i>SUBJ</i> 来到/VV,来到/VV <i>DOBJ</i> →会客 室/NN	END

Summary

- What is transition-based method?
- Apply transition-based methods on different tasks.
- Joint modeling with transition-based methods.